Extraordinary Magnetoresistance in Semiconductor/Metal Hybrids: A Review
نویسندگان
چکیده
The Extraordinary Magnetoresistance (EMR) effect is a change in the resistance of a device upon the application of a magnetic field in hybrid structures, consisting of a semiconductor and a metal. The underlying principle of this phenomenon is a change of the current path in the hybrid structure upon application of a magnetic field, due to the Lorentz force. Specifically, the ratio of current, flowing through the highly conducting metal and the poorly conducting semiconductor, changes. The main factors for the device's performance are: the device geometry, the conductivity of the metal and semiconductor, and the mobility of carriers in the semiconductor. Since the discovery of the EMR effect, much effort has been devoted to utilize its promising potential. In this review, a comprehensive overview of the research on the EMR effect and EMR devices is provided. Different geometries of EMR devices are compared with respect to MR ratio and output sensitivity, and the criteria of material selection for high-performance devices are discussed.
منابع مشابه
Optimization of the extraordinarymagnetoresistance in semiconductor- metal hybrid structures for magnetic-field sensor applications
Semiconductor-metal hybrid structures can exhibit a very large geometrical magnetoresistance effect, the so-called extraordinary magnetoresistance (EMR) effect. In this paper, we analyze this effect by means of a model based on the finite element method and compare our results with experimental data. In particular, we investigate the important effect of the contact resistance ρc between the sem...
متن کاملLow-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN
Related Articles Heat-induced damping modification in yttrium iron garnet/platinum hetero-structures Appl. Phys. Lett. 102, 062417 (2013) Extraordinary magnetoresistance in two and three dimensions: Geometrical optimization J. Appl. Phys. 113, 064505 (2013) Improved chemical and electrical stability of gold silicon contacts via epitaxial electrodeposition J. Appl. Phys. 113, 063708 (2013) Carri...
متن کاملMetal-organic framework materials as nano photocatalyst
Photocatalytic degradation of toxic organic compound in water, soil and air by semiconductor catalysts such as TiO2 and ZnO have received much attention over the last two decades. However, the low quantum yield, easy agglomeration and difficult post-separation of these inorganic catalysts limit their application for large-scale applications. Metal-organic frameworks (MOFs) are the latest class ...
متن کاملMetal-organic framework materials as nano photocatalyst
Photocatalytic degradation of toxic organic compound in water, soil and air by semiconductor catalysts such as TiO2 and ZnO have received much attention over the last two decades. However, the low quantum yield, easy agglomeration and difficult post-separation of these inorganic catalysts limit their application for large-scale applications. Metal-organic frameworks (MOFs) are the latest class ...
متن کاملTunneling anisotropic magnetoresistance and spin-orbit coupling in Fe/GaAs/Au tunnel junctions.
We report the observation of tunneling anisotropic magnetoresistance effect in the epitaxial metal-semiconductor system Fe/GaAs/Au. The observed twofold anisotropy of the resistance can be switched by reversing the bias voltage, suggesting that the effect originates from the interference of the spin-orbit coupling at the interfaces. Corresponding model calculations reproduce the experimental fi...
متن کامل